International Journal of Scientific & Engineering Research Volume 9, Issue 12, December-2018
ISSN 2229-5518
1447

Lightweight Cloud Storage Systems: Analysis and
Performance Evaluation

Samson Akintoye and Antoine Bagula
ISAT Laboratory, Department of Computer Science,
University of the Western Cape, Bellville, South Africa

Abstract—The increasing popularity of cloud storage has led
many organizations that dealing with critical data (financial,
medical, telecoms data) to consider moving data out of their
data centers into the cloud storage. However, using a single cloud
storage provider raises concern such as having a single point of
failure. Furthermore, despite their popularity, vendor locks-ins
cloud solutions are not a natural fit-for-all as they are plugged
with issues related to electricity consumption and security and
raise privacy concerns. Striping data across multiple clouds
storage to provide fault tolerance and deploying lightweight
cloud solutions to avoid vendor lock-in are the solutions to
these problems. In this paper, we survey different multiple
clouds storage systems: how they are designed and implemented;
their strengths and weaknesses. We also conduct an analysis
of different redundancy schemes and compare emulation and
experimentation to assess the relevance of using emulation when
cost and availability do not allow prototyping.

Cloud Computing Cloud Storage, Regenerating codes, Era-
sure Codes, Replication

I. INTRODUCTION

Cloud computing is a model for hosting and delivering IT
services over the internet. It provides users with a long list of
benefits, such as on-demand self-service; broad, heterogeneous
network access; resource pooling and rapid elasticity with
measured services [20]. One of the important services offered
in cloud computing is the cloud data storage, in which,
subscribers do not have to store their own data on their servers,
where instead their data will be stored on the cloud service
provider’s servers [29]. Cloud Storage is a service where data
is remotely maintained, managed, and backed up. The service
is available to users over the internet. It allows the user to store
files online so that the user can access them from any location
via the internet. The provider company makes them available
to the user online by keeping the uploaded files on an external
server. However, using a single cloud storage provider as a
backup solution raises concerns such as having a single point
of failure [4] and vendor lock-ins [11]. The alternative solution
is to stripe data across different cloud providers [11], [10]
and thus improve the fault-tolerance of cloud storage through
diversity.

Data can be striped to multiple clouds with replication,
erasure codes and generating codes to provide high availability
from non-reliable devices. Replication is easy to understand
and implement but far from being optimal with respect to
the trade-off between storage and availability [19], [24] since
it requires extremely high bandwidth and storage overhead.
Erasure codes eliminate the overhead of strict replication.

It divides an object into n fragments and recode them into
m fragments, where n > m. The key property of erasure
codes is that the original object can be reconstructed from
any m fragments. Erasure codes performs well when some
clouds experience short-term transient failures or foreseeable
permanent failures but there some cases where permanent
failures do occur and are not always foreseeable [22]. When a
cloud fails permanently, it is replaced by a new, empty cloud.
This replacement cloud is required to obtain the data that
was stored previously in the failed cloud, by downloading
data from the remaining clouds in the network. However,
downloading the entire data is clearly wasteful of the network
resources. It is important to reduce the repair traffic (i.e., the
amount of data being transferred over the network during
repair), and hence the monetary cost due to data migration
[26]. To minimize repair traffic, regenerating codes [16] have
been proposed for storing data redundantly in a distributed
storage system (a collection of interconnected storage nodes).
Regenerating codes are built on the concept of network coding
[3], in the sense that nodes perform encoding operations and
send encoded data. It requires less repair traffic than traditional
erasure codes with the same fault tolerance level.

This paper revisits the issue of fault-tolerance in cloud com-
puting to evaluate the performance of the different cloud
storage systems described above when deployed on com-
modity hardware used in emerging lightweight community
cloud infrastructures. The main contributions of this paper are
threefold. Firstly, we review different multiple clouds storage
systems and compare these systems in an emulated environ-
ment in terms of data integrity, confidentiality and availabil-
ity. Secondly, building under the OpenStack platform , we
conduct testbed experimentation using the same performance
parameters to compare the same cloud storage algorithms
on a cloud storage prototype built with commodity desktop
hardware. Finally, we compare the emulated and experimental
results to assess the relevance of using emulation when testbed
experimentation is not an option because of cost acquisition
and availability of equipment. The remainder of this paper
is organized as follows. Section 2 presents data redundancy
schemes while section 3 describes the key features of the
studied multiple cloud storage systems. These systems are then
analyzed in in section 4 and their performance evaluated in
section 5. Our conclusions and avenues for future work are
discussed in section 6.

IJSER © 2018
http://www_ijser.org

II. DATA REDUNDANCY SCHEMES

Data redundancy is a technique of storing multiple instances
of the same data on different cloud storage in order to avoid
data unavailability such that if any part of the stored data is
unavailable as a result of permanent failure in any of the cloud
storage , the surviving clouds should be enough to reconstruct
the original data. In this section, we review different schemes
used to add redundancy to data in multiple cloud storage.

A. Replication.

Replication is the simplest and most commonly used form
of striping data across the clouds storage to improve reliability
against cloud failures [24], [17]. There are two type of replica-
tion schemes: whole-file and block level replication schemes.

1) Whole-file replication:: Suppose we make n copies of
the file stored across many cloud storages. We need at least
one of those n clouds storage to be available to recover the
file in case of failure.

2) Block-level replication:: Let f be an input file, n be the
total number of cloud storages, and &k be the number of cloud
storages required for data reconstruction. The input file f is
divided into n chunks f.chunkO, ... , f.chunkn such that each
cloud storage will hold exactly one chunk.

Many distributed storage systems adopted replication as a
redundancy scheme. For example PAST [18] adopts full-file
replication, while CFS [15] divides files into chunks and then
performs replication at the chunk level.

B. Erasure codes.

Erasure codes provide a better storage solution and ensure
high data availability with less storage than replication. There
are two types of erasure codes: a) RAID-6 codes: This is based
on XOR operations and b) Reed-Solomon (RS) codes: This is
based on linear operations on Galois Fields. In the latter, an
input file f is encoded using a Vandermonde matrix to give
(n — k) parity chunks f.chunkk , ... , f.chunkn, where n is the
total number of cloud storages and k is the number of cloud
storages required for data reconstruction. The file f is split into
k chunks f.chunkO , ... , f.chunkk — 1. Each node will hold
exactly one chunk. Decoding is done by decoding the k£ chunks
downloaded from the first k£ accessible cloud storage. Repairs
are simply decodes (if data chunks are missing) followed by
encodes (if code chunks are missing).

C. Regenerating Codes.

Regenerating codes are a class of erasure codes that opti-
mally trade the bandwidth needed for repairing a failed node
with the amount of data stored per node of the network.
Regenerating codes apply network coding to storage systems
to offer the best trade-off between network bandwidth repair
cost C' and storage cost M. The parameter set of regenerating
codes over finite field Fy, is given by {n, k,d, «, 5, B}. The
corresponding codes are called [n,k,d] regenerating codes
having a parameter set (o, 3, B). Two important operations
of [n, k, d] regenerating codes are as follows.

International Journal of Scientific & Engineering Research Volume 9, Issue 12, December-2018
ISSN 2229-5518
1448

Data Reconstruction: Reconstruct the message of size B
symbols by downloading B = ka symbols from any k& nodes

Regeneration (repair): Repair a failed node of size «
symbols by downloading v = d3 symbols from any d nodes
among n — 1 remaining nodes

There are two classes of regenerating codes: Exact
minimum-storage regenerating (EMSR) codes [28] and Func-
tional minimum-storage regenerating (FMSR) codes [14]

1) Exact minimum-storage regenerating (EMSR) codes: In
EMSR, a replaced node is required to store exactly the same
data as was stored in the failed node. As a result of that,
there is no change in the coefficients of a replace node under
Exact minimum-storage regenerating codes. This eliminate
additional communication overheads during the regeneration
operation, and also avoids retuning of the reconstruction and
regeneration operations. It has capability to maintain the code
in systematic form [23], [25].

2) Functional minimum-storage regenerating (FMSR)
codes: The notion of functional regeneration was introduced
in [16] and implemented to repair a single cloud failure in
[14]. The input file f is encoded to give 2n code chunks
f.chunkO, ... , f.chunk2n. Each cloud storage will hold
exactly two chunks. Decoding is done by decoding the
2k chunks downloaded from the first k& accessible cloud
storage (tolerates up to two failed cloud storage). Despite
tolerating two failed nodes in decode, only single-cloud
storage failures are supported in repair, which will download
exactly one chunk each from the remaining n — 1 accessible
cloud storage. In the functional regeneration, the data stored
at the replacement cloud storage may be different from
the data stored in the corresponding failed cloud storage.
This difference may incur the additional communication to
inform all cloud storage of the replacement. Moreover, the
reconstruction and regeneration need to be retuned for the
new set of coefficients.

III. MULTIPLE CLOUD STORAGE SYSTEMS

In this section, we survey and review some proposed mul-
tiple clouds storage systems.

A. HAIL (High-Availability and Integrity Layer).

Bowers et al. [11] propose HAIL (High-Availability and In-
tegrity Layer) that provide data integrity and availability across
multiple cloud storage. It engages the use of PORs (Proofs of
Retrievability) as building blocks by which storage resources
can be verified and reallocated when failures are detected. It
relies on a single trusted verifier that interacts with nodes to
verify the integrity of stored data. In HAIL, a client distributes
a file ' with redundancy across n servers and keeps some
small (constant) state locally.The goal of HAIL is to ensure
resilience against a mobile adversary. The advantages of the
protocol are: Strong file-intactness assurance; Low overhead;
Strong adversarial model; Direct client-server communication;
and Static/dynamic file protection. However, the protocol is
built on erasure code which provides only fault tolerance; it
does not address the recovery of the outsourced data on a failed

2
IJSER © 2018
http://www_ijser.org

International Journal of Scientific & Engineering Research Volume 9, Issue 12, December-2018
ISSN 2229-5518
1449

cloud. It requires that the servers run some code and does not
provide guarantee of confidentiality of the stored data.

B. RACS (Redundant Array of Cloud Storage).

Abu-Libdeh et al. [2] Propose RACS (Redundant Array of
Cloud Storage) a proxy based system that transparently stripes
data across multiple cloud storage providers. The protocol
allows customers to avoid vendor lock-in, reduce the cost of
switching providers, and better tolerate provider failures. It
retrieves data from the cloud that is about to fail and moves the
data to the new cloud. It is designed as a proxy-based solution
between the client application and a set of n repositories,
which are cloud storage locations ideally hosted by different
providers. RACS splits the incoming object into m data shares
of equal size where m < n are configurable parameters. It
uses erasure coding to create additional (n — m) redundant
shares, for a total of n shares. Any subset of m shares is
sufficient to reconstruct the original object. The disadvantages
of the protocol are: it does not have capability of recover loss
data when permanent cloud failure occurred and address data
integrity and confidentiality challenges of cloud storage.

C. DEPSKY.

Bessani et al. [10] propose DEPSKY, a dependable and
secure storage system to improve the availability, integrity and
confidentiality of data stored in the cloud. It addresses four
limitations of individual clouds storage: Loss of availability,
Loss and corruption of data, Loss of privacy and Vendor lock-
in by using Byzantine quorum system protocol, cryptography,
secret sharing, erasure codes and the diversity that comes from
using several clouds. DEPSKY is designed as a virtual storage
cloud, which is accessed by its users by invoking operations
in several individual clouds.

D. NCCloud.

Chen et al. [14] propose NCCloud, a proxy-based storage

system for fault-tolerant multiple-cloud storage that achieves
cost-effective repair for a permanent single-cloud failure. It
built on top of a network-coding-based storage scheme called
the functional minimum-storage regenerating (FMSR) codes,
which maintain the same fault tolerance and data redundancy
as in traditional erasure codes (e.g., RAID-6), but use less
repair traffic which incur less monetary cost due to data
transfer. NCCloud is a proxy based design that interconnects
multiple cloud repositories as shown in Figure 1a. The proxy
serves as an interface between client applications and the
clouds. If a cloud experiences a permanent failure, the proxy
activates the repair operation, as shown in Figure 1b.
The proxy reads the essential data chunks from other surviving
clouds, reconstructs new data chucks, and writes these new
chucks to a new cloud. It excludes the failed cloud in repair
operation. However, the protocol does not guarantee the in-
tegrity and confidentiality of the data chunks stripped across
multiple clouds.

E. ICStore (Intercloud Storage.)

Cachin et al. [12] address and improves the confidentiality,
Integrity, Reliability and Consistency of data in multiple cloud
storage providers. The solution distribute data to the intercloud
after confidentiality and integrity test. The ICStore consist
of ICStore client which coordinate multiple cloud storage
services of the intercloud and ICStore client consist of three
core layers: (i) Confidentiality, (ii) Integrity and (iii) Reliability
and Consistency. The layered approach enables layers to
be switched “on” and “off” to provide different levels of
dependability. The major advantage of the solution is to protect
outsourced data against downtime, loss or hacker attacks.

FE Scalia

Papaioannou et al. [21] propose a cloud storage broker-
age solution that continuously adapts the placement of data
across multiple cloud storage providers with the optimization
objective to minimize storage cost. It efficiently considers
repositioning of only selected objects that may significantly
lower the storage cost. Scalia can run directly at customer
sites as an integrated hardware and software solution or can
be deployed as hosted service across several datacenters. The
advantage of the solution is that, it help cloud customer
to avoid vendor lock-in and satisfy certain availability and
durability constraints in a cost-effective way. However, the
solution did not address latency overhead and scalability of
prototype

G. Toward Secure and Dependable Storage Services in Cloud
Computing

In the cloud storage system, users outsource their data in
the cloud without burden of managing local hardwares and
softwares. Thus, the integrity and availability of the data
being stored on the distributed cloud servers must be guar-
anteed. One of the challenges is to detect unauthorized data
modification and corruption as a result of server compromise
and random Byzantine failures. To solve these problems, the
Wang et al. [30] review basic tools from coding theory that
is needed for data distribution across cloud servers and the
homomorphic token is introduced to provide data integrity.
The token computation function is selected to preserve the
homomorphic properties, which can be perfectly integrated
with the verification of erasure-coded data. Finally, the scheme
is extended to third party auditing with only slight modification
of the main design

H. A secured cost-effective multi-cloud storage in cloud com-
puting

In order to secure, storage and access on outsource data
in the cloud, Singh et al. [27] propose technique of multiple
division to protect the client’s data. The scheme divides the
data into multiple parts and stored in an redundant form across
the cloud service providers simultaneously. The advantage of
the scheme is that, as the number of part increase the security
of data also increase because it is difficult for intruder to check
all file to match the content.

3
IJSER © 2018
http://www_ijser.org

International Journal of Scientific & Engineering Research Volume 9, Issue 12, December-2018
ISSN 2229-5518
1450

(a) Normal Operation

(b) Repair Operation

Fig. 1. Normal/Repair Operations [14].

IV. MULTIPLE CLOUD STORAGE SYSTEMS ANALYSIS

In this section, We analyse and compare multiple cloud
storage systems as depicted in Table 1.

A. Data Availability

All schemes reviewed facilitate the availability of data
stored in multiple cloud storages. Different redundancy
schemes are used by different systems to stripe data across
multiple clouds storage providers for fault-tolerance and data
redundancy. The diversity of multiple clouds improves the
availability of data stored in the cloud storage.

B. Integrity of Data

[11],[12], [30], [27] and [10] use cryptographic protocols
to protect the integrity of the stored data against malicious
and mobile adversaries. However, RACS, Scalia and NCCloud
proposed in [2], [21] and [14] do not provide any mechanism
to detect data corruption violations in the cloud storage.

C. Data Confidentiality

The schemes [10], [12] and [21] address the security of data
stored in the cloud storage. They use cryptographic protocol
to secure access to the outsourced data in the cloud storage.

D. Repairing of a failed cloud

Only NCCloud proposed in [14] addresses a single cloud
permanent failure and repair the lost data with the help of
the other surviving clouds to preserve data redundancy. Other
schemes do not provide any mechanism to repair the lost data
of a failed cloud rather they retrieves data from the cloud that
is about to fail and moves the data to the new cloud.

E. Redundancy Schemes

[11], [21], [2], [30] and [10] use erasure codes and [12]
and [27] use replication technique to provide fault tolerance
while NCCloud proposed in [14] is built on regenerating
codes to provide both fault tolerance and storage repair. It is
established that regenerating codes require less repair traffic
(i.e., the amount of data being transferred over the network
during repair) than traditional erasure codes with the same
fault tolerance level [13].

V. PERFORMANCE EVALUATION

In this section, we emulate and implement NCCloud [14].
We also compare the results of emulation and implementation.

A. Emulation

NCCloud is mounted on a linux machine with an Inter(R)
Core(TM) i5-4590 3.30Ghz CPU and 8GB RAM. We create
five folders which represent cloud storage, one of them is a
spare cloud storage used in repair. We carry out two emula-
tions on the local cloud storage created. The first emulation
compares Replication, RS and FMSR codes when n = 4 and k
= 2 with varying file sizes, where n = number of nodes and &
= fault tolerant. The second emulation compares Replication,
RS and FMSR codes under different values for n and k with
a fixed file size.

In the first emulation, We test the response times of the file
upload, file download, and repair operations of Replication,
RS and FMSR with n = 4 and k£ = 2. We use randomly
generated files from 10MB to SOMB as the data set. We set
the path of a chosen repository to a non-existent location to
simulate a cloud storage failure in repair. Figure 2, plots the
response times of all three file operations versus the file size
and show that RS has less response time than FMSR codes and
Replication has highest response time in file upload. For file
download, RS has lowest response time follow by Replication
codes, FMSR has highest response time. For instance in the
case of n =4 and k = 2, when uploading a 50MB file, RS takes
0.063s, FMSR codes take 0.078s and Replication takes 0.136s
to upload. When downloading SOMB file, RS takes 0.402s
and Replication takes 0.725s to download while FMSR takes
0.459s to download.

In the second emulation, we fix the file size at 1.2GB and
test the response times of the three operations again under four
different sets of configurations for n and k: n =4, k=2;n =
6,k=4;,n=8,k=06;and n =10, k = 8. Figures 3,4, 5 and 6
shows the response time results, RS codes have less response
time than FMSR codes and Replication has highest response
time in file upload. For file download, Replication has lowest
response time follow by RS codes, FMSR has highest response
time regardless of n and k. For instance in the case of n =
4 and k = 2, when uploading a 1.2GB file, RS codes take
17.3s, FMSR codes take 20.7s and Replication takes 36.0s
to upload and encode. When downloading a 1.2GB file, RS
codes take 10.1s and Replication takes 6.8s to download while
FMSR codes take 9.3s to download and decode, no decoding

4
IJSER © 2018
http://www_ijser.org

International Journal of Scientific & Engineering Research Volume 9, Issue 12, December-2018
ISSN 2229-5518

1451
TABLE I
COMPARISON OF THE MULTIPLE CLOUDS STORAGE SYSTEMS.
Schemes Availability | Integrity | Confidentiality | Repairing of a failed cloud | Redundancy Scheme
Bowers et al. [11] Yes Yes No No Erasure Codes
Abu-Libdeh et al. [2] Yes No No No Erasure Codes
Bessani et al. [10] Yes Yes Yes No Erasure Code
Henry et al. [14] Yes No No Yes Regenerating codes
Cachin et al. [12] Yes Yes Yes No Replication
Papaioannou et al. [21] | Yes No No No Erasure Code
Wang et al. [30] Yes Yes No No Erasure Code
Singh et al. [27] Yes Yes Yes No Replication
is needed in the case of RS codes and Replication as the native P — . . .
chunks are available. The differences increase with n and k. 012 = ;ﬁSR
However, FMSR has less response time in repairing a single % ,40| | REPLICATION
cloud failure. The main advantage of FMSR codes is that g voe
FMSR codes download less data during repair. For instance, in g
repairing a SOMB file with n = 4 and k = 2, FMSR codes takes g 0%
0.139s, RS codes takes 0.255s and Replication takes 0.726s. gm
0.0z
B. Experimentation J
. oo0 10 20 30 40 50
Multiple cloud storage is implemented by integrating NC- File size (ME)
Cloud on openstack swift [1], openstack is an open-source (a) File upload
software for cloud computing platform, usually deployed as
an infrastructure-as-a-service (IaaS). We connect five storage 08 =
nodes to proxy node via private network and proxy node 7" mmm RS

connects to the internet as shown in figure 7. Proxy node runs
the following services:

o Proxy services : This receive and process HTTP requests
from NCCloud

o Keystone: Provides an authentication and authorization
service for OpenStack services

e Mysql database : Provides scalable and reliable Cloud
Database-as-a-Service functionality

Storage nodes runs account, container, and object services.
Also contains the SQLite databases. We create (n + 1) con-
tainers on Swift, so each container represent a cloud repository,
one of them is a spare cloud repository used in repair.

We carry out experiments to compare Replication, RS and
FMSR codes when n = 4 and k = 2 with varying file sizes
where n = number of nodes and k = fault tolerant. we test the
response times of the file upload, file download, and repair
operations of Replication, RS and FMSR with n = 4 and &
= 2. We use randomly generated files from 10MB to SOMB
as the data set. We set the path of a chosen repository to a
non-existent location to simulate a cloud storage failure in
repair. Figure 8, plots the response times of all three file
operations versus the file size and show that RS has less
response time than FMSR codes and Replication has highest
response time in file upload. For file download, RS has lowest
response time follow by Replication codes, FMSR has highest
response time. For instance in the case of n = 4 and k = 2,
when uploading a 50MB file,RS takes 33.17s, FMSR codes
take 35.02s and Replication takes 65.26s to upload to upload.
When downloading 50MB file, RS takes 6.55s, FMSR codes
take 7.27s and Replication takes 7.57s to download. FMSR

o
@

|l REPLICATION

1)

File size (MB)

S
o

(=3
w

Response time (seconds)
o
=

=]
X}

o

o
(=)

(b) File repair

e
1)

B FMSR
RS
6| |l REPLICATION

10 20 30 40

File size (MB)

(c) File download

o
=

=
=

=)
o

=}
w

Response time (seconds)
= o
[=

=}

o
=

Fig. 2. Emulation

has less response time in repairing a single cloud failure. For
instance, in repairing a SOMB file with n =4 and k£ = 2, FMSR
codes takes 14.01s, RS codes takes 14.53s and Replication
takes 21.14s.

5
IJSER © 2018
http://www_ijser.org

International Journal of Scientific & Engineering Research Volume 9, Issue 12, December-2018

ISSN 2229-5518

1452

n=4, k=2; Filesize=12GB

e—e Upload
«—+ Repair
~—— Download

~
S

3]

Response time (seconds)
8

op___]
-

RS FMSR
Redundancy schemes

Replication

Fig. 3. n=4,k=2

n =6, k=4, Filesize=1.2GB

e—e Upload
80|« « Repair
~—— Download

5 & 8

Response time (seconds)

8

P e N

-

RS FMSR
Redundancy schemes

Replication

Fig. 4. n=6k=4

n=8,k=6; Filesize=1.2GB

e—e Upload
80|« + Repair
~—— Download

70

2

2]

]

Response time (seconds)

8

20//
1] — |

w

RS FMSR
Redundancy schemes

Replication

n =10, k= 8; File size = 1.2GB

e—e Upload
«+ Repair
~—— Download

3

3 3

Response time (seconds)
3

+

RS FMSR
Redundancy schemes

Replication

Fig. 6. n =10, k =8

Storage nodes .

Internet

Proxy node

Fig. 7. Implementation of Multiple Clouds Storage using Openstack Swift

file repair and file down where n = 4, k = 2. As expected,
the results reveal that emulation leads to shorter response
time than experimentation in file upload, repair and download,
regardless of file sizes as shown in figures 2 and 8. This
is due to the absence of latency since the emulation is run
on a single machine on a private network during uploading
and downloading data to storage nodes. For instance, when
uploading a 5S0MB file where n = 4 and k = 2, in case of
emulation as shown in table 2, RS takes 0.063s, FMSR codes
take 0.078s and Replication takes 0.136s to upload while in
case of experimentation, RS takes 33.17s, FMSR codes take
35.02s and Replication takes 65.26s to upload.

For file download as shown in table 2, in case of emulation,
RS takes 0.402s and Replication takes 0.725s to download
while FMSR takes 0.459s to download while in case of
experimentation, RS takes 6.55s, FMSR codes take 7.27s and
Replication takes 7.57s to download.

TABLE 11
RESPONSE TIME: UPLOAD/DOWNLOAD 50MB

. _ _ Upload S0MB Emulation (secs) Implementation (secs)
Fig.5. n=8k=6 RS 0.063 33.17
FMSR 0.078 35.02
Replication 0.136 65.26
C. Emulation versus Experimentation Download 50MB | Emulation (secs) Implementation (secs)
RS 0.402 6.55
We compare response times of the emulation and exper- EMSR 0.459 727
imentation/implementation for three operations; file upload, [Replication 0725 757
6
IJSER © 2018

http://www_ijser.org

International Journal of Scientific & Engineering Research Volume 9, Issue 12, December-2018
ISSN 2229-5518
1453

=1
=}

N FMSR
S mmm RS
1:? sol Il REPLICATION
8
24
@
E
3 30
g
E 201
1D
01
FI\cSIzc{MB)
(a) File upload
25 - . - .
B FMSR
RS

20

Il REPLICATION

Response time (seconds)

o

10 A0 an 40
Fila size (ME)

=}

(b) File repair

I GG
= RS
6 N REPLICATION

5
al
2
1
0

Fllc size (MB)

Response time (seconds)
-

(c) File download

Fig. 8. Implementation

However, when looking at the performance patters of both
methods, the results reveal that they are in agreement as they
lead to similar relative performance values. This confirms that
when designing and evaluating the performance of lightweight
cloud storage systems, emulation results can be used with con-
fidence to predict experimental results when cost and availabil-
ity preclude the use of testbed experimentation/prototyping.

VI. CONCLUSIONS

In this paper, we have reviewed and surveyed different
multiple clouds storage systems proposed to provide fault
tolerance, data integrity and confidentiality. The schemes [11],
[2], [10], [21] and [30] use erasure codes to provide availability
of the outsourced data in the cloud storage. [12] and [27]
use replication technique to provide data redundancy in the
cloud. NCCloud [14] uses regenerating codes to provide

fault tolerance and repair a permanent single-cloud failure in
multiple clouds storage system.

Furthermore, we performed comparative experiments for
data redundancy schemes for multiple cloud storage: Replica-
tion, RS and FMSR. FMSR codes have less response time in
repairing a single cloud failure compare to RS and Replication.

We also compare the response time of the emulation and
implementation for three operations: file upload, repair and file
download, the results show that emulation has lower response
time than implementation, this is due to the latency between
the proxy server and storage servers.

The management of the cloud communication infrastructure
is a key parameter that may require redesigning existent
network management techniques to enable efficient data mi-
gration between cloud nodes. Multipath routing techniques
such as presented in [9], [6] will be redesigned to support
QoS by having different forms of cloud data propagated over
different paths form a source to a destination. The cost-based
traffic engineering techniques proposed in [8], [7] will also be
redesigned to balance traffic over the cloud communication
platform to increase throughput and reduce communication
delays. Deploying a wireless network [31], [5] to scale the
cloud infrastructure over long distances in the rural settings
of the developing world is another key issue that needs to be
addressed as future research work.

REFERENCES

[1] Openstack object storage. http://www.openstack.org/projects/storage/.

[2] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. Racs: A case
for cloud storage diversity. Proc. of the 1st ACM Symposium on Cloud
Computing, pages 1204-1216, June 2010.

[3] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung. Network information
flow. IEEE Trans. on Information Theory, 46(4):1204-1216, July 2000.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, , and M. Zaharia. A view of
cloud computing. Communications of the ACM, 53(4):50-58, 2010.

[5] A. Bagula, M. Zennaro, G. Inggs, S. Scott, and D. Gascon. Ubiquitous
sensor networking for development (usn4d): An application to pollution
monitoring. In Sensors, 12(1):391-414, 2012.

[6] A. B. Bagula. Hybrid traffic engineering: the least path interference
algorithm. In Proceedings of the 2004 annual research conference
of the South African institute of computer scientists and information
technologists on IT research in developing countries, pages 89-96, 2004.

[71 A. B. Bagula. Hybrid routing in next generation ip networks. In
Computer Communications, 29(7):879-892, 2006.

[8] A. B. Bagula. On achieveing bandwidth-aware lsp//spl lambda/sp
multiplexing/separation in multi-layer networks. IEEE Journal on
Selected Areas in Communications, 25(5):987-1000, 2007.

[9]1 A. B. Bagula. Modelling and implementation of qos in wireless sensor
networks: a multiconstrained traffic engineering model. EURASIP
Journal on Wireless Communications and Networking, (1), 2010.

[10] A. Bessani, M. Correia, B. Quaresma, F. Andre, , and P. Sousa. Depsky:
Dependable and secure storage in a cloud-of-clouds. In Proc. of ACM
EuroSys, 2011.

[11] K. D. Bowers, A. Juels, and A. Oprea. Hail: A high-availability
and integrity layer for cloud storage. In Proc. of the 16th ACM
Conference on Computer and Communication Security (CCS), pages
187-198, November 2009.

[12] C. Cachin, R. Haas, and M. Vukoli.
intercloud. IBM Research Report, 2010.

[13] B. Chen, R. Curtmola, G. Ateniese, and R. Burns. Remote data checking
for network coding-based distributed storage systems. In Proc. of ACM
CCSW, 2010.

[14] H. C. H. Chen, Y. Hu, P. P. C. Lee, and Y. Tang. Nccloud:a network
coding based storage system in a cloud of clouds. January 2014.

Dependable storage in the

7
IJSER © 2018
http://www_ijser.org

International Journal of Scientific & Engineering Research Volume 9, Issue 12, December-2018

ISSN 2229-5518

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-
area cooperative storage with cfs. In ACM Symposium on Operating
Systems Principles (SOSP), 2001.

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran. Network coding for distributed storage systems. IEEE Trans. on
Information Theory, 56(9):4539-4551, September 2010.

A. G. Dimakis, Y. Wu, C. Sub, and K. Ramchandran. A survey
on network codes for distributed storage. Proceedings of the IEEE,
99(3):476-489, March 2011.

P. Druschel and A. Rowstron. Past: A large-scale, persistent peer-to-
peer storage utility. In USENIX Workshop on Hot Topics in Operating
Systems (HotOS), 2001.

W. K. Lin, D. M. Chiu, and Y. B. Lee. Erasure code replication revisited.
In P2P, 2004.

P. Mell and T. Grance. Draft nist working definition of cloud computing.
http://csrc.nist.gov/groups/SNS/cloud-computing/index.html, June 2009.

T. G. Papaioannou, N. Bonvin, and K. Aberer. Scalia: An adaptive
scheme for efficient multi-cloud storage. In Proceedings of International
Conference for high performance computing and networking, November
2012.

C. Preimesberger. Many data centers unprepared for disasters: Industry
group. http://'www.eweek.com/c/a/ITManagement/Many-Data-Centers-
Unprepared-for-Disasters- Industry-Group-772367/, March 2011.

K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal exact-regenerating
codes for distributed storage at the msr and mbr points via a product-
matrix construction. IEEE Trans. Inf. Theory, 57(8):5227-5239, 2011.

R. Rodrigues and B. Liskov. High availability in dhts: Erasure coding
vs. replication. In IPTPS, 2005.

N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran. Dis-
tributed storage codes with repair-by-transfer and nonachievability of
interior points on the storage-bandwidth tradeoff. IEEE Trans. Inf.
Theory, 58(3):1837-1852, 2012.

Y. Singh, F. Kandah, and W. Zhang. A secured cost-effective multi-cloud
storage in cloud computing. Computer Communications Workshops
(INFOCOM WKSHPS), IEEE Conference, pages 619-624, April 2011.
Y. Singh, F. Kandah, and W. Zhang. A secured cost-effective multi-cloud
storage in cloud computing. Computer Communications Workshops
(INFOCOM WKSHPS), 2011 IEEE Conference on, pages 619 —624,
april 2011.

C. Sub and K. Ramchandran. Exact-repair mds code construction using
interference alignment. IEEE Trans. on Information Theory, 57(3):1425—
1442, March 2011.

M. Vukolize. The byzantine empire in the intercloud. ACM SIGACT
News, 41:105-111, September 2010.

C. Wang, Q. Wang, K. Ren, and N. C. an d W. Lou. Towared
secure and dependable storage in cloud computing. Journal of IEEE
TRANSACTIONS ON SERVICES COMPUTING, 5(2), June 2012.

M. Zennaro, A. Bagula, D. Gascon, and A. Noveleta. Long distance
wireless sensor networks:simulation vs reality. In Proceedings of the
4th ACM Workshop on Networked Systems for Developing Regions, (12),
2012.

8
IJSER © 2018
http://www_ijser.org

1454

